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LETTER TO THE EDITOR 

&-expansion for the critical exponents of a vector spin glass 

J E Green 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 25 October 1984 

Abstract. The E-expansion for the critical exponents of a vector spin glass is calculated 
to O ( E ~ )  ( ~ = 6 - d ) .  

Recent Monte Carlo calculations (Ogielski and Morgenstern 1984, Young and Bhatt 
1984) and large cell renormalisation group calculations (McMillan 1984, Bray and 
Moore 1984) have suggested that the Ising spin glass may have a phase transition at 
finite temperature in three dimensions. This has led us to look again at the field theory 
model of a vector spin glass due to Harris et a1 (1976). In particular we have extended 
the &-expansions for critical exponents from order (Elderfield and McKane 1978) 
to order E ~ .  We hope that in the future the high-order behaviour of these expansions 
can be evaluated so that they may be resummed using the techniques of Le Guillou 
and Zinn-Justin (1977, 1980) and Vladimirov et a1 (1979) to give numerical results in 
three dimensions. 

The Hamiltonian for the m-vector spin glass model of Harris et a1 (1976) can be 
written 

where 

a, p, 7 , .  . . , n label the n replicas 

i, j, k = 1, . . . , m label the spin components 

and Q&@(x) = @(x).  
We shall use Greek superscripts to label replicas and Roman subscripts to label 

spin components throughout this letter. 
Before we describe in detail our E-expansion calculation we consider whether the 

cubic theory with Hamiltonian ( 1 )  is well defined. In general a cubic field theory is 
not well defined (McKane 1979) but in two special cases, the Yang-Lee edge singularity 
(Kirkham and Wallace 1979) and the percolation problem (Houghton et a1 1978), it 
has been shown that the theory is well behaved with oscillatory behaviour at high 
order in the E-expansion. This is due to the taking of some ‘unphysical’ limit: in the 
Yang-Lee edge this is the imaginary coupling constant and in the percolation problem 
it is an n + 0 limit. For the spin glass model it has not been shown that the E-expansion 
has oscillatory behaviour at high order, however we believe that the ‘unphysical’ limit 
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of zero replicas will make the theory stable. We should also consider the relevance 
of the higher-order terms in Q which arise when the field theory is derived from the 
lattice model. Elderfield and McKane ( 1978) investigated this problem by calculating 
the anomalous dimensions of the quartic terms to one-loop order. They found that 
the quartic interaction remained irrelevant down to three dimensions for the m = 3 
Heisenberg case but that this was not true for the Ising ( m  = 1) or X Y  ( m  = 2 )  models. 

We now proceed to the description of our &-expansion calculation. In de Alcantara 
Bonfim er a1 (1980, 1981 to be referred to as I) a general cubic field theory was 
considered with Hamiltonian 

If we can write our spin glass Hamiltonian (1) in this form, we can read off the 
&-expansions directly from I. Following Elderfield and McKane (1978) we define a 
tensor 

FZfL' = j [ 8 a y 8 P ' 6 s , c 8 b d  + 6 a ' 8 P y 8 a d 6 b c  - Tap''( 8 a c 6 b d  + 8 a d 6 b c ) ]  (3) 

where T is defined by 

1 if a =/3 = y =  6 

0 otherwise. 
T a P Y '  = 

The tensor F has the following useful properties 

FZfL' = FTjZf = FZfjJ 
FakW 

abcd F%z = FZfe? 

where we have now introduced the Einstein summation convention. We can then write 
the Hamiltonian (1 )  in terms of free sums as 

$(VQ:f(x)VQ$(x) + miQzf(x)QTj(x))FzfJ' 

+ 8 F a P P  ubr l \22Fbcr3r4  P P Y P , P 4 F Y a P , P 6  cars r6  (??:2(x) Q?:$(x) Q?:2(x)]. 
3 !  

The free propagator for the theory is then 

and the two-point vertex function 

where X ( q ,  mo) is the sum of self energy diagrams. If we consider the one loop 
contribution to X shown in figure 1 and specialise to the Ising case then the contribution 
of this diagram is 
2 F p 1  P z h P 4 2  F P s P 6 P 7 P 8  FaP'l '2 F P I  6 ' 2 ' 3  Fp ,p8 '3 ' ,  Fr6'4', F p 3 p 4 S s ' 6 F p s p 6 ' 6 b 4  
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a 

Figure 1. The one-loop Feynman graph contributing to the self energy for the spin glass. 
The labelling denotes the replica labels on the propagators. 

After summing over all the repeated indices this becomes 

So for the Ising spin glass 

The equivalent expression from I for the model ( 2 )  is 

and hence we identify 

(Y = 2( n - 2 )  for the Ising spin glass. 

The identification of the other tensor contractions p, y, S ,  A, defined in I is easier as 
these are all associated with diagrams which contribute to the 3-point function (see 
figure 2 ) .  In the spin glass we define r3(qir ma) by 

Figure 2. The Feynman graphs which correspond to the independent tensor contractions 
which arise in the 3-point function. 
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in order to calculate the p, y, S, A. Beyond the two-loop level it becomes impracticable 
to contract the F’s by hand and the Schoonschipt program was used. This made it 
possible to calculate the tensor contractions for the m-vector system. The results are 

a = 2( nm - 2m), /3 = 1 + nm - 3m, y = 2 + 6 n m - l 8 m ,  

S = -1 + n(  1 +30m - 10m2+ 17m3)+ n2(3m2-6m3)+ n3m3-77m+7m2-23m3, 

A = n(26m -28m2)+5n2m2-62m+50m2.  (13) 

Substituting these values into the results given in I and taking the n + 0 limit: 

27 9 

+ 45(2m - 1 ) 5  [ l ( 3 ) ( - y m  -=m2 3 + 27 136m3 - 7 168m4 

1 mE E 2  + 
= -5 (2m - 1) 43(2m - 

E 3  

m4-- 
27 76 3 4096 320 2056544 144832 -- m+-m2-- m3+- 

27 3 243 81 

3 9 
-2m E 2  

v-’-2+7=- E +  
(2m - 1) 43(2m - 1)3 

E 3  + 45(2m - 1)5 (((3)(-3072m -55808m2+ 130560m3 

42496 - 10240m4-6144m’)-704m -- 
9 

1554176 366784 
81 27 

-23936m3-- m4 - - m 5 ) .  

“ 1  
n = ~  n 

l ( 3 ) =  1 7= 1.202. 

In the Ising m = 1 case these become 

In the Heisenberg m = 3 case the exponents are 

7 = -0.28 t7.7333 X 10-2~2-7.8127 x 1 0 - 2 ~ 3  

~ - ‘ - 2 + 7 = - 1 . 2 ~ +  1 . 1 6 4 ~ ~ -  1 . 4 7 3 5 ~ ~ .  

We notice that to this order in E the terms show oscillatory behaviour in the Heisenberg 
case but not in the Ising case. A proper calculation of the high-order behaviour will 
show whether this is significant. 

+ SCHOONSCHIP is an algebraic manipulation program written by M Veltman. For further information 
see Strubbe (1974). 
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